
Misuse detection systems

Contents

• Overview of signature based IDS

• SNORT

• SNORT rules

Overview of signature based IDS

• Signature-based detection is based on

the premise that abnormal or malicious

network traffic is different from normal

traffic.

• Because of that, it is possible to create an

attack signature that matches the

particular abnormal traffic pattern.

Overview of signature based IDS

• The majority of commercial IDS are

signature based, or their main components

are signature based.

• Modern commercial IDS are getting more

and more based on distributed architecture

with network nodes

– the sensors reside on mission critical hosts

instead of being dedicated to intrusion

detection only – resolves for encrypted traffic

monitoring, for example.

Overview of signature based IDS

• Examples of commercial IDS:

– Network Flight Recorder (NFR)

– Dragon

– RealSecure (ISS)

– NetRanger (Cisco)

– Net Prowler

– BlackICE

– Centrax

– Etc.

SNORT

• SNORT is an open-source network IDS.

• It can also be used as a “packet sniffer”

and packet logger.

• When Snort is run in the sniffer mode, it

displays the contents of every packet

traversing the line directly to the console.

• It can display packet headers, as well as

packet payloads.

SNORT

• NIDS mode is similar to the sniffer mode, in

that it collects every packet it encounters.

• Instead of simply copying the data to a file

or displaying it to a monitor, Snort inspects

each packet and determines whether it is

benign or malicious in nature.

• Snort then sends alerts when it finds

suspicious-looking traffic.

SNORT

• If tuned properly, Snort is capable of

monitoring every packet in a fully

saturated 100Mb/s network.

• Snort begins to experience packet loss

around the 200-300Mb level, and cannot

be run at traffic levels higher than 500Mb.

• Thus it is not suitable for use in modern

gigabit networks.

SNORT

• With Snort, a malicious traffic signature is

used to create a rule that is loaded into the

Snort detection engine.

• The detection engine is the primary

component of Snort and is responsible for

signature matching.

• SNORT can also use heuristics to detect

malicious traffic that has no signature.

SNORT

• Three groups of Snort rules:

– Suspicious packet headers detection

– Suspicious packet payload detection

– Specific protocol elements control

• Initial SNORT installation includes a

number of predefined rules, intended to

be generic for all networks.

• Then, a set of rules specific for the

network in question is written.

SNORT
• Suspicious packet headers detection

– Example:

• The ICMP (Internet Control Message Protocol)

ping used by the NMAP tool (to determine whether

a host at a particular IP address is running) has a

specific signature.

• It sets the ICMP type field to 8 and has an empty

data payload.

SNORT
• Suspicious packet headers detection (cont.)

– Example (cont.):

• This NMAP ping signature is different than a ping

issued directly from a Windows or Unix operating

system.

• Since NMAP has a unique-looking ping, it is

possible to create a rule that triggers whenever

traffic matching this signature hits the protected

network.

SNORT

• Suspicious packet headers detection (cont.)

– Example (cont.)

• The Snort rule for this is the following:
– alert icmp $EXTERNAL_NET any -> $HOME_NET any

 (msg: “ICMP PING NMAP"; dsize: 0; itype: 8;)

• Generate an alert for ANY ICMP traffic that

originates outside the protected network AND has an

empty data payload AND has the ICMP type field set

to 8.

SNORT

• Suspicious packet payload detection

– Example:
• alert tcp $EXTERNAL_NET any -> $HOME_NET 139

 (msg: "DOS SMBdie attack"; flags: A+; content:

“|57724c65680042313342577a|”;)

• This rule states that an alert should be generated if

any TCP traffic that contains

“|57724c65680042313342577a|” in the payload is found

to be headed from outside the protected network to

a computer running the Server Message Block

(SMB) service.

SNORT

• Suspicious packet payload detection (cont.)

– Example (cont.)

• This payload means a buffer overflow in the

Windows protocol, which would bring down the

target host.

• This rule triggers only when this payload is aimed at

a computer running Netbios (TCP port 139) from

the outside.

• The rule is made specific to Netbios sessions to

reduce the possibility of a false positive alert.

SNORT

• Specific protocol elements control

– For accuracy and performance reasons, Snort

signatures can be specific to one element of a

particular protocol.

– Example:

• alert tcp $EXTERNAL_NET any -> $HTTP-

SERVERS $HTTP-PORTS

 (msg:"WEB-IIS ISAPI .ida attempt"; uricontent:

”.ida?” ; nocase; dsize:>239; flags:A+;)

– The .ida extension is a rarely used component

of Microsoft's IIS Indexing Service.

SNORT

• Specific protocol elements control (cont.)

– Example (cont.)

• This rule states that any network traffic coming

from the external network that is intended for the

Web servers of the protected network that has

.ida? in the URL creates an alert.

• The .ida extension was found to have a serious

remote buffer overflow that could result in

remote control of the Web server.

• This type of rule is more efficient because it

searches URL content only, instead of the entire

payload.

SNORT

• Custom rules

– Although generic rules provide some intrusion
monitoring coverage, a higher degree of rule
granularity is the most effective means of
increasing coverage.

– The capability of writing custom rules is a
very desirable feature of Snort.

– The rule syntax is fairly simple and thus
custom rule writing is relatively easy for those
who possess solid knowledge of their own
network.

SNORT

• Custom rules (cont.)

– Example: writing a rule that alerts whenever a

suspicious traffic directed towards the SSH

server arrives from a particular URL.

• alert tcp 192.168.1.1 any -> $HOME_NET 22

 (msg: "suspicious host SSH traffic";)

• Rules can be written to match any traffic

signature or payload.

SNORT

• Detecting suspicious traffic via heuristics

– Signature matching is a highly effective

means for detecting known suspicious traffic.

– However, signature matching is not 100%

accurate.

– There are situations where traffic is harmful

but has no distinguishable signature.

– Statistical Packet Anomaly Detection Engine

(SPADE) module detects suspicious traffic

that matches no signature.

SNORT

• Detecting suspicious traffic via heuristics

(cont.)

– SPADE works by detecting bad traffic through

heuristic pattern matching.

– SPADE observes network traffic and

constructs a table that describes the normal

traffic on the protected network.

– The table contains data about the types of

packets and the source and destination

addresses.

SNORT

• Detecting suspicious traffic via heuristics

(cont.)

– After the table has reached a significant size,

each packet that SPADE picks up is assigned

a number based on the frequency in which it

occurs in the table.

– Packets that are rare for the protected

network are assigned a higher number.

SNORT

• Detecting suspicious traffic via heuristics

(cont.)

– When a configured threshold is reached, an

alert is generated.

– A typical anomaly detection system with

learning.

SNORT

• Detecting suspicious traffic via heuristics

(cont.)

– Example: protecting a web server by means

of SPADE

• We deploy Snort with SPADE enabled on a

network segment that leads out of the Internet.

• SPADE builds a table for incoming traffic-mostly

TCP connections into ports 80 and 443.

• After the table is built, TCP requests on ports 80

and 443 are considered "normal traffic" and

assigned low numbers.

SNORT

• Detecting suspicious traffic via heuristics

(cont.)

– Example: protecting a web server by means

of SPADE (cont.)

• If an attacker were to probe the Web server

looking for services on ports other than 80 and

443, SPADE would assign a high number to this

traffic because it would be rare and unusual for this

particular server.

• If enough attempts to unusual ports are made in a

predefined threshold, SPADE generates an alert.

SNORT

• Detecting suspicious traffic via heuristics

(cont.)

– This mode of operation is effective in

detecting reconnaissance measures by

attackers, who often probe ports slowly in an

attempt to get lost in the background noise.

– SPADE is capable of recognising the situation

when an attacker is using multiple source

addresses in an attempt to evade an IDS.

SNORT

• Detecting suspicious traffic via heuristics

(cont.)

– Distributed Denial of Service (DDoS) attacks,

where many compromised hosts flood a host

with so many requests that legitimate users

cannot reach the server, are detected by

SPADE as well.

SNORT

• Gathering intrusion data

– A powerful feature of Snort is related to its

capability of gathering data.

– Many commercial IDS require the operator to

specify in advance for which rules data should

be kept.

– It is very difficult to know in advance the

attacks at which the protected network will be

exposed to.

SNORT

• Gathering intrusion data (cont.)

– The only solution is to save every payload

that corresponds to suspicious traffic.

– Snort does exactly this – it logs all payloads

when possible.

– Consequence: a lot of memory is needed.

SNORT

• Assessing threats

– Payload data can help the operator to

determine whether an attack is being

perpetrated by a human or not.

– If it ends up that a human is behind the attack,

one might be able to use payload data to

determine the attacker's skill level.

SNORT

• Preprocessing the data to be inspected

– Snort has a class of plug-ins, known as

preprocessors, that interact with data before

the detection engine processes them.

– Three functional groups of preprocessors:

• Data Normalization

• Protocol Analysis

• Non-Signature-Matching Detection.

SNORT

• Preprocessing the data to be inspected

(cont.)

– Data normalization

• New methods of attack and IDS evasion are

constantly evolving that Snort detection engine

either does not detect or does not detect efficiently.

• Preprocessors are added to the Snort architecture

to normalize data so that the detection engine can

properly interpret them.

SNORT

• Preprocessing the data to be inspected

(cont.)

– Data normalization (cont.)

• Example:

– The Fnord preprocessor detects an IDS evasion

technique borrowed from virus creators - polymorphism.

– In an effort to defeat a signature-matching engine of an

Antivirus, a virus's code randomly changes and mutates.

– This is known as a polymorphic virus.

SNORT

• Preprocessing the data to be inspected

(cont.)

– Data normalization (cont.)

• Example (cont.)

– The same technique has been applied to exploits.

– The shell code has been rendered polymorphic.

– The Fnord preprocessor can detect mutated NOP

sequences, which are a series of no-operation

instructions in machine code that are used to exploit a

buffer overflow.

SNORT

• Preprocessing the data to be inspected

(cont.)

– Protocol analysis

• The SNORT detection engine has a short list of

protocols that it can interpret.

• Others, including some protocols that are heavily

used over public networks, cannot be interpreted.

SNORT

• Preprocessing the data to be inspected

(cont.)

– Protocol analysis (cont.)

• This has lead to a class of protocol preprocessors

that aid in detecting protocol abuses.

• Example: ASN1_decode, which detects

inconsistencies in the Abstract Syntax Notation

number one protocol.

SNORT

• Preprocessing the data to be inspected

(cont.)

– Protocol analysis (cont.)

• Higher level protocols, such as SNMP, LDAP, and

SSL, rely on ASN.1.

• The capability to detect misuse of the ASN.1

protocol is necessary to monitor for these types of

attacks.

SNORT

• Preprocessing the data to be inspected

(cont.)

– Non-Signature-Matching Detection

• Some types of malicious traffic do not have a

discernable signature.

• This class of preprocessor uses methods other than

signature matching to detect suspicious traffic.

• Examples:

– Reconnaissance attacks (portscanning, etc.)

– Some DoS attacks (where traffic is normal, but consumes

bandwidth and CPU time in such a way that the service in

question becomes unavailable.

SNORT
• Preprocessing the data to be inspected

(cont.)

– Non-Signature-Matching Detection (cont.)

• Corresponding preprocessors:

– Portscan2

– Stream4

• Preprocessors such as Portscan2 and Stream4

can detect this class of traffic and some of the

evasive techniques that attackers employ to keep

IDS from discovering it.

SNORT
• Alerting

– Snort's output plug-ins are the means Snort

has to get intrusion data from the detection

engine to the operator.

– Like its preprocessors, Snort's outputting

functionality is modular and pluggable.

– Different skill levels, network configurations,

and personal preferences will dictate which

outputting mechanism is appropriate for the

particular environment.

SNORT
• Alerting (cont.)

– Snort supports everything from a raw binary

tcpdump output to various relational database

outputs.

– Snort's outputs are not intended to be human-

readable.

– They are logged in various formats that make

intrusion data readily accessible to other

applications or tools.

SNORT
• Alerting (cont.)

– Outputting can be done in these formats:

• syslog

• tcpdump

• Text log file

• XML

• Relational database

• SMTP

• Snort Unified

SNORT

• Alerting (cont.)

– The Snort designers have left the

presentation of data to previously written

applications.

– Snort supports every major relational

database platform (Microsoft SQL Server,

Oracle, MySQL, Postgre SQL, etc.)

SNORT
• Aggregating data

– Outputting to an industry standard format

such as syslog lets the operator aggregate

data from many disparate security devices.

– Most routers and firewalls support

functionality to log to a syslog server.

SNORT
• Aggregating data (cont.)

– It is possible to import logs from other devices

into the Snort database structure with

logsnorter.

– It is convenient to have all logging and

intrusion-related information in one easily

secured location.

– Aggregation via syslog is a simplified means

of performing event correlation.

SNORT
• Aggregating data (cont.)

– Event correlation

• Event correlation is the act of associating

occurrences of events as they happened at

different devices on a system or across a range of

systems.

• Event correlation is critically important to intrusion

detection.

SNORT
• Aggregating data (cont.)

– Event correlation (cont.)

• Attackers rarely compromise a single host and

walk away.

• Most attacks involve an attacker compromising a

single host and then leveraging legitimate

privileges to penetrate deeper within a protected

network.

SNORT

• Logging with the Unified Format and

Barnyard

– Historically, the relational database output

plug-in has been the limiting factor in how

much bandwidth Snort could process.

– With a database plug-in enabled, Snort was

capable of processing about 40% of the

bandwidth compared to logging with the

fastest method, a tcpdump file.

– Logging via a network rather than a local disk

further exacerbated the problem.

SNORT

• Logging with the Unified Format and

Barnyard (cont.)

– Snort's developers decided to outsource the

database logging to a new application –

Barnyard, specifically designed for the task.

– With Barnyard, Snort spools output data in the

Snort Unified Format at the maximum speed it

can write to disk.

– After an alert is written to disk, the Snort

daemon is finished handling the alert and can

concentrate on processing new packets.

SNORT

• Logging with the Unified Format and

Barnyard (cont.)

– This frees up the resources that would have

been used outputting to a database.

– The binary data is parsed by Barnyard into

the various formats that are fed into database

plug-ins attached to Barnyard.

SNORT

• Logging with the Unified Format and

Barnyard (cont.)

– Barnyard runs as an entirely separate process

that is independent of Snort.

– Alerts can now be posted to a database

without affecting Snort's capability of

capturing and analyzing traffic.

SNORT

• Displaying alerts

– Intrusion detection is not an automated

process.

– It requires a human to receive the alerts and

react to them in a timely fashion.

– Getting real-time alerts out of Snort and to the

operator can be configured in many ways.

SNORT

• Displaying alerts (cont.)

– The two primary means for alerting are

• Real-time alerting with syslog and swatch

• Analysis Console for Intrusion Databases (ACID).

SNORT

• Displaying alerts (cont.)

– Swatch

• Actively monitors a syslog file for preconfigured

events and generates an alert when conditions are

met.

• Alerts can be sent via a number of means (e-mail,

audible alarm, etc.)

SNORT

• Displaying alerts (cont.)

– ACID

• A Web application that reads intrusion data stored

in a database and presents the data in a browser.

• ACID presents Snort data in a human-readable

format and includes functionality to perform

complex searches.

• Complex searches can be created with more than

30 different criteria to pinpoint events occurring in

intrusion data.

• This level of accuracy is necessary to quickly

identify and eliminate false positives.

SNORT

• Displaying alerts (cont.)

– ACID (cont.)

• Can group alerts into logically functional

categories.

• Matches links to various common vulnerabilities

and exposures (CVE) on the Internet.

• CVE is a standardized classification of

vulnerabilities and exposures, and a significant

resource for identifying and understanding attacks.

SNORT

• Displaying alerts (cont.)

– ACID (cont.)

• ACID can distinguish multiple installations of Snort

from each other, and process data from other

security devices.

• This makes ACID another option for event

correlation through aggregation.

SNORT

• Displaying alerts (cont.)

– ACID (cont.)

• Includes a charting component that is used to

create statistics and graphs.

• It can be useful to chart how the threat to the

protected network changes over time.

• It can also be useful for accomplishing network

management tasks of course regard IDS.

SNORT

• Prioritizing Alerts

– An IDS needs to be able to categorize and

prioritize alerts in an organized manner.

– Not all alerts deserve the same attention and

scrutiny.

– Example: A simple ping is no cause for

immediate alarm, but a remote exploit attempt

against an unpatched server is.

SNORT

• Prioritizing Alerts (cont.)

– Types of alerting in an IDS:

• No prioritization

• Hard-coded prioritization

• Customizable prioritization

SNORT

• Prioritizing Alerts (cont.)

– No Prioritization

• In this system, all alerts have the same priority.

• This makes sorting by severity impossible.

• Any automatic emergency notification mechanism

is rendered useless.

• A very bad idea - not prioritizing alerts leaves the

IDS analyst frustrated and ultimately disinterested

in intrusion monitoring.

SNORT

• Prioritizing Alerts (cont.)

– Hard-coded Prioritization

• This is only marginally better than no prioritization.

• Here the IDS designer has decided for the

customer which alerts are important and which are

not.

• Usually, they are categorized as High, Medium,

and Low.

• Although this does allow the operator to sort and

filter out less important alerts, such an approach to

alerting is inadequate.

SNORT

• Prioritizing Alerts (cont.)

– Hard-coded Prioritization (cont.)

• In this system, it is possible to generate alerts

regarding irrelevant events for the particular

environment.

• Example: an Apache Web server alert, categorized

as a high risk by the IDS designer, is generated

even if Apache is not installed at all.

SNORT

• Prioritizing Alerts (cont.)

– Customizable Prioritization

• The preferred way to group alerting data is by user-

defined priorities.

• Modern networks are modular and therefore

unique, so customizable prioritization of alerts is

necessary.

• Alerts can be sorted based on the priorities of the

customer, so alerts are generated according to the

organization’s needs.

• Having more than three severity levels for alerts is

desirable.

SNORT
• Prioritizing Alerts (cont.)

– Customizable Prioritization (cont.)

• Snort supports customizable prioritization of alerts.

• It has 32 predefined alert categories.

• The severity level of each of the categories can be

modified .

• The operator can also add as many custom alert

categories as required.

• Like signatures, alert classification is performed via

simple rules.

SNORT

• Prioritizing Alerts (cont.)

– Customizable Prioritization (cont.)

• A sample alert classification for Trojan traffic:

– config classification: trojan-activity, A Network Trojan

was detected, 1

– This classification is for any type of detected trojan

activity (Netbus, Back Orifice, SubSeven, etc.)

– This rule grants the highest severity level when logging

the alert, 1.

SNORT
• Prioritizing Alerts (cont.)

– Customizable Prioritization (cont.)

• A sample alert classification for Trojan traffic

(cont.):

– Any signature rule classified as trojan-activity would

correspond to this classification rule.

– This is done with the classtype identifier in the signature

rule.

– Example: The SubSeven signature rule has trojan-

activity specified for the classtype:

» alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any

 (msg:”BACKDOOR subseven 22”; flags: A+; content:

“|0d0a5b52504c5d3030320d0a|” ; cIasstype : trojan-activity;)

SNORT

• Prioritizing Alerts (cont.)

– Customizable Prioritization (cont.)

• A sample alert classification for Trojan traffic

(cont.):

– If we were not concerned with SubSeven activity but we

want to keep all other Trojans at alert priority 1, we can

override the classification rule with a priority identifier.

– The new rule is:

» alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any

 (msg:”BACKDOOR subseven 22”; flags: A+; content:

“|0d0a5b52504c5d3030320d0a|” ; cIasstype : trojan-activity;

priority: 2;)

SNORT

• Prioritizing Alerts (cont.)

– Customizable Prioritization (cont.)

• Most reasonable alert prioritizing requirements can

be handled by these means.

• Alert prioritization would be of little use if alerts

could not be delivered in a timely, organized

manner.

• Snort gives the operator the choice of 72 different

alert outputting modules.

SNORT

• Prioritizing Alerts (cont.)

– Customizable Prioritization (cont.)

• Modules can be used to log intrusion data in any

format from raw output to point-and-click GUIs.

• The operator is not limited to using only one

alerting output method.

• It is possible to choose as many outputting

methods as necessary.

